Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Basic Clin Androl ; 32(1): 22, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2139142

ABSTRACT

BACKGROUND: At present, there is a lack of standardized preparation methods of sperm antigen for the detection of antisperm antibody (AsAb). To screen sperm antigen mimotopes from a phage display random peptide library and use them to establish an enzyme-linked immunosorbent assay (ELISA) for the detection of AsAb, immunoglobulins were extracted from the sera of rabbits with positive AsAb and negative AsAb, respectively, by the saturated ammonium sulfate method, and a phage display 12-mer peptide library was affinity panned by the extracted immunoglobins coated on the ELISA plate. Then, the obtained positive phage clones were identified by ELISA and sent for sequencing and peptides synthesis. Last, a diagnostic ELISA was established to detect clinical serum and seminal plasma samples. RESULTS: A total of sixty phage clones were chosen by affinity panning, and sixteen of them reacted positively with AsAb in indirect ELISA and sandwich ELISA. Following DNA sequencing and translation, the peptide sequences of the sixteen positive clones were obtained. By comparison in Blast database, four of sixteen positive clones were found to be closely related to male reproduction. Two (#1 and #25) of four mimotopes were synthesized, and an ELISA method was established using the two mimotopes as sperm specific antigens. One hundred and thirty-four serum samples and seventy-four seminal plasma samples from infertile couples were analyzed by the established ELISA with #1 and #25 mimotopes, respectively. The positive rates of AsAb in serum samples were 20.15% (27/134) for #1 and 11.19% (15/134) for #25, respectively, and the coincidence rate between them was 91.04% (122/134). The positive rates of AsAb in seminal plasma samples were 1.35% (1/74) for both #1 and #25, and the coincidence rate was 100%. CONCLUSION: Sperm antigen mimotopes can be obtained successfully by the phage display technique, and can be used as standard sperm specific antigens to establish an ELISA method for the detection of AsAb.


RéSUMé: CONTEXTE: À ce jour, il n'existe pas de méthodes normalisées de préparation d'antigènes spermatiques pour la détection des anticorps anti-spermatozoïdes (ACAS). Dans le but d'élaborer un tel test ELISA (enzyme-linked immunosorbent assay), nous avons extrait de sérum de lapins des anticorps anti-spermatozoïdes humains via la technique du sulfate d'ammonium saturé et en ayant recours à une librairie phagique de peptides (12-mer). Les clones positifs ont été identifiés par ELISA, séquencés à façon et les peptides correspondants ont été synthétisés. In fine, un test ELISA diagnostic a été conçu pour être utilisé avec des échantillons cliniques de sérum et de plasmas séminaux. RéSULTATS: Au total, soixante clones de phages ont été sélectionnés, et seize d'entre eux se sont avérés interagir avec les ACAS en ELISA indirect comme en ELISA sandwich. Les séquences peptidiques de ces seize clones positifs ont été obtenues. Par comparaison avec les bases de données (Blast), quatre de ces seize clones positifs se sont révélés être étroitement liés à la reproduction masculine. Deux des quatre mimotopes (#1 et #25) ont été synthétisés, et un test ELISA a été généré en utilisant ces deux mimotopes comme antigènes spécifiques des spermatozoïdes. Cent trente-quatre échantillons de sérum et soixante-quatorze échantillons de plasma séminal de patients de couples infertiles ont alors été analysés avec ce test ELISA. Respectivement, les échantillons sériques se sont révélés positifs à 20,15% (27/134) pour le mimotope #1 et à 11,19% (15/134) pour le mimotope #25, avec un taux de coïncidence de 91,04% (122/134). Seul un échantillon de plasma séminal (1/74, soit 1, 35%) s'est révélé positif à la fois pour le mimotope #1 et #25 (coïncidence 100%). CONCLUSION: La technique « phage display¼ nous a permis d'identifier des mimotopes d'antigènes spermatiques qui ont pu être utilisés afin de générer un test ELISA pour la détection d'anticorps anti-spermatozoïdes.

2.
Neurol Neuroimmunol Neuroinflamm ; 8(4)2021 07.
Article in English | MEDLINE | ID: covidwho-1518339

ABSTRACT

OBJECTIVE: Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is a severe immune-mediated disorder. We aim to report the neurologic features of children with PIMS-TS. METHODS: We identified children presenting to a large children's hospital with PIMS-TS from March to June 2020 and performed a retrospective medical note review, identifying clinical and investigative features alongside short-term outcome of children presenting with neurologic symptoms. RESULTS: Seventy-five patients with PIMS-TS were identified, 9 (12%) had neurologic involvement: altered conciseness (3), behavioral changes (3), focal neurology deficits (2), persistent headaches (2), hallucinations (2), excessive sleepiness (1), and new-onset focal seizures (1). Four patients had cranial images abnormalities. At 3-month follow-up, 1 child had died, 1 had hemiparesis, 3 had behavioral changes, and 4 completely recovered. Systemic inflammatory and prothrombotic markers were higher in patients with neurologic involvement (mean highest CRP 267 vs 202 mg/L, p = 0.05; procalcitonin 30.65 vs 13.11 µg/L, p = 0.04; fibrinogen 7.04 vs 6.17 g/L, p = 0.07; d-dimers 19.68 vs 7.35 mg/L, p = 0.005). Among patients with neurologic involvement, these markers were higher in those without full recovery at 3 months (ferritin 2284 vs 283 µg/L, p = 0.05; d-dimers 30.34 vs 6.37 mg/L, p = 0.04). Patients with and without neurologic involvement shared similar risk factors for PIMS-TS (Black, Asian and Minority Ethnic ethnicity 78% vs 70%, obese/overweight 56% vs 42%). CONCLUSIONS: Broad neurologic features were found in 12% patients with PIMS-TS. By 3-month follow-up, half of these surviving children had recovered fully without neurologic impairment. Significantly higher systemic inflammatory markers were identified in children with neurologic involvement and in those who had not recovered fully.


Subject(s)
COVID-19/complications , Inflammation/complications , Nervous System Diseases/etiology , Systemic Inflammatory Response Syndrome/complications , Adolescent , Biomarkers/blood , Brain/diagnostic imaging , COVID-19/pathology , COVID-19/psychology , Child , Child Behavior Disorders/epidemiology , Child Behavior Disorders/etiology , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Inflammation/pathology , Magnetic Resonance Imaging , Male , Nervous System Diseases/pathology , Nervous System Diseases/psychology , Retrospective Studies , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/psychology , Thrombosis/blood , Thrombosis/etiology
3.
J Med Virol ; 93(2): 760-765, 2021 02.
Article in English | MEDLINE | ID: covidwho-1196398

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 emerged in China in December 2019 and then rapidly spread worldwide. Why COVID-19 patients with the same clinical condition have different outcomes remains unclear. This study aimed to examine the differences in the phenotype and functions of major populations of immune cells between COVID-19 patients with same severity but different outcomes. Four common type adult inpatients with laboratory confirmed COVID-19 from Beijing YouAn Hospital, Capital Medical University were included in this study. The patients were divided into two groups based on whether or not COVID-19 polymerase chain reaction (PCR)-negative conversion occurred within 3 weeks. Peripheral blood samples were collected to compare the differences in the phenotype and functions of major populations of immune cells between the two groups of patients. The result shows that the proportions of CD3+ CD8+ CD38+ HLA-DR+ CD27- effector T killer cells generally declined, whereas that of CD3+ CD4+ CD8+ double-positive T cells (DPTs) increased in the persistently PCR-positive patients. In summary, considering the imbalance between effector T killer cells/CD3+CD4+CD8+ DPTs was a possible key factor for PCR-negative conversion in patients with COVID-19.


Subject(s)
Biological Variation, Individual , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Natural Killer T-Cells/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Testing , Female , Gene Expression , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Lymphocyte Count , Male , Middle Aged , Natural Killer T-Cells/virology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Severity of Illness Index
4.
Int J Surg ; 79: 120-124, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-412451

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great public concern worldwide due to its high rates of infectivity and pathogenicity. The Chinese government responded in a timely manner, alleviated the dilemma, achieved a huge victory and lockdown has now been lifted in Wuhan. However, the outbreak has occurred in more than 200 other countries. Globally, as of 9:56 am CEST on 19 May 2020, there have been 4,696,849 confirmed cases of COVID-19, including 315,131 deaths, reported to Word Health Organization (WHO). The spread of COVID-19 overwhelmed the healthcare systems of many countries and even crashed the fragile healthcare systems of some. Although the situation in each country is different, health workers play a critical role in the fight against COVID-19. In this review, we highlight the status of health worker infections in China and other countries, especially the causes of infection in China and the standardised protocol to protect health workers from the perspective of an anaesthesiologist, in the hope of providing references to reduce medical infections and contain the COVID-19 epidemic.


Subject(s)
Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pandemics , Pneumonia, Viral/transmission , Asymptomatic Diseases , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Infection Control , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL